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A dynamical calculation is performed for the Or in the 'EK —> *EK amplitude, using the N/D method. The 
forces considered are due to the 2 exchange in the crossed channel, as well as the others arising from the far 
left-hand cut. The latter ones are dealt with in the manner of Balazs. It is seen that the Or can be generated 
self-consistently with a mass equal to about 1540 Me V. 

A RESONANCE has recently been reported1 in the 
EK system, in the isotopic spin 1=0 state. From 

a theoretical point of view, this discovery is extremely 
important, for it has long been a specific prediction of 
the Gell-Mann-Ne'eman version2 of the SU3-symmetry 
scheme. It forms the isoscalar member of the well-
known group of P3/2 baryon-meson resonances forming 
the tenfold representation of the symmetry group. The 
oldest among these resonances, namely, the N*9 has 
been the subject of investigation of various workers. 
One of the earliest approaches was the Chew-Low 
static model,3 which has since been given a better basis 
in the relativistic dispersion-theoretic treatment of 
Frautschi and Walecka.4 The essential result of these 
calculations is that the simple nucleon-exchange Born 
diagram can reproduce the general features of the P3/2 

pion-nucleon resonance. This idea has since been ex
tended by Martin and Wali5 to cover all the ten reso
nances as being generated by baryon-exchange forces 
in the relevant channels. These authors take into 
account all two-particle baryon-pseudoscalar meson 
channels, and relate the coupling constants entering 
the various Born diagrams through SU3 symmetry to 
the pion-nucleon coupling constant, in terms of the 
so-called mixing parameter / . They find that, for 
reasonable values of this parameter, the tenfold reso
nances can be approximately understood. On the other 
hand, there have been two calculations, by Singh and 
Udgaonkar6 on N*, and by Pati7 on 2*, who have, in 
addition to baryon-exchange graphs, also considered 
the distant part of the left-hand cut by the well-known 
Balazs technique.8 Their calculations are, however, 
single-channel ones, and hence their conclusion that the 
distant part of the left-hand cut has important con-

1 V. E. Barnes, P. L. Connolly, D. J. Crennell, B. B. Culwick, 
W. C. Delaney et al, Phys. Rev. Letters 12, 204 (1964). 

2 M . Gell-Mann, Phys. Rev. 125, 1067 (1962); Y. Ne'eman, 
Nucl. Phys. 26, 222 (1961). 

3 G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956). 
4 S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486 

(1960). 
5 A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963). 
6 V. Singh and B. M. Udgaonkar, Phys. Rev. 130, 1117 (1963). 
7 J. C. Pati, University of Maryland, 1963 (unpublished). 
«L. A. P. Balazs, Phys. Rev. 128, 1939 (1962). 

tributions requires further investigation. A considera
tion of the £2~~ channel, namely, the %K —> %K one, will 
however produce a more clear-cut answer, for there 
being no other immediate baryon-pseudoscalar meson 
channel open to it, the multichannel effect is expected 
to be certainly far less important than in the case of 
ir-N or K-A scattering. In the following, we attempt an 
understanding of the Q~ through single-channel S-K 
scattering, taking into account the baryon-exchange 
diagrams as well as the far left-hand contributions, 
following the method of Balazs.8 We find that the far 
left-hand cut is certainly not unimportant in generating 
the Or, in agreement with similar conclusions drawn in 
Refs. 6 and 7. 

The kinematics of the problem is identical to that 
in the case of T-N scattering, which has been dealt with 
in detail by Frautschi and Walecka.4 We follow their 
notation with the pion mass taken as unity. The T 
matrix may be expressed as 

T=-A(s,t)+i(qi+q2)B(s,t). (1) 

The partial-wave amplitude in the Pm state is chosen 
to be 

g1+= (W*/<f)eu* sinSi+ 
= ^q^{(W+MBy-MK'}{A1(s)+(W-Ms)B1(s)} 

+{(W-Ms¥-MK*}{-Ai(s)+(W+Ms)Bi(s)}-], 

(2) 
where W is the total cm. energy and 

•£ {AhBt}= I {A(s,t),B(s,0}Pi(z)dz. 

This amplitude can be expressed as 

gl+=ND~\ 

(3) 

(4) 

where D has the usual unitarity cut and N incorporates 
all the other singularities of the amplitude. The func
tion N can be conveniently written as 

N(s) = Ni*-*(s)+N%(s), (5) 
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with9 dispersion relation involving N: 

Ni*-*(s) = 

and 

1 fL>Imgi+*>A(s')D(s') 

Li S' — S IT J L 

1 f° Imgl+(s')D(s') 
ds' 

ds' (6) 

(7) 
s —s 

N\{s) and N2(s) correspond, respectively, to contribu
tions arising from the short cut due to single-baryon 
exchange and contributions from the far-left cut. There 
are two single-baryon exchange terms, corresponding to 
exchanges of 2 and A. The amplitudes arising out of 
these diagrams are given (in the notation of Martin 
and Wali) by 

(SX,SX)o=3(SX,2 ,EK)- (BK,A,EK), 

(Ei?,E£)!= (Ei? ,2 ,E£)+ (ZK,A,ZK), 
(8) 

in isospin states 0 and 1, respectively, and involve the 
E2i£ and EAi£ coupling constants. By invoking SU3 

symmetry, these coupling constants can be related to 
the 7T-N coupling constant in terms of the so-called 
mixing parameter / : 

g??=g*-N2 (9) 

Martin and Wali give a value of f=0.25 for a good fit 
to the observed resonances, whereas Cornwall and 
Singh10 get a value of / = 0.4 from experimental photo-
production results. If we take / = 0 . 2 5 , then it is clear 
that the attraction caused by baryon-exchange forces 
in the T= 1 channel is § times that in the T= 0 channel. 
Anticipating our final result that the Or is a rather 
strongly bound state, one might expect a resonant T= 1 
state of EK. However, the forces in the T= 1 channel 
are rather sensitive to the value of / , unlike the T=0 
channel. Any calculation in the T= 1 state must there
fore await more precise information on f, and as a 
matter of fact definite evidences regarding the existence 
or otherwise of such a resonance may provide good 
estimates of / . Calculations in the T=0 state are, how
ever, sufficiently insensitive to / . We work, therefore, 
with / = 0 . 2 5 , in which case the A coupling vanishes. 
Consequently, we shall consider the S-exchange term 
only, the contribution of which is 

gi+*(s)=(3g1?/327rg*) 

X [ { ( W + M z Y - MK2} (W- MZ)QI (a) 

+ {(W~-Mzy-MK
2}(W+M2)Q2(aK, (10) 

where 
a={2(M^+MK

2)-W2-M1?}/2q2+l, (11) 

The D function can be written as a once-subtracted 
9 The limits L\ and L2 are, in our units, 80.5 and 129.1, 

respectively. 
10 J. M. Cornwall and V. Singh, Phys. Rev. Letters 10, 551 

(1963). 

D(s) = l-
-so r q'z/s' 

TT ^ T h . (s' — s)(s' — S 
•N(s')ds', (12) 

where s0 is the subtraction point. We shall now sketch 
the procedure that is adopted for the evaluation of 
N(s). Part of it that arises due to the exchange of 2 , 
i.e., Ni2(s) can be worked out by inserting a suitable 
expression for D(s) that is expected to be valid in the 
region of the short cut. The simple and obvious form of 
this expression is 

D(S)=1—(S—SQ)/(SR—SQ), (13) 

where SR is the position of the resonance to be generated. 
Substituting this and the expression for g1+

s(s), as 
given by (10), the integral on the right-hand side of 
(6) can be done for any S, and thus Ni^(s) is known for 
that s. This is how it was evaluated at the matching 
point (see below). However, N^is) also occurs in the 
integral for D(s) and it is essential to know it in a form 
that exhibits its s dependence in a simple and explicit 
way for the low-energy region of interest, beginning 
from the threshold. I t is found that the two-pole 
formula 

N1^(s) = b1/(s-s1)+h/(s-s2), (14) 

where ^=90, and 2̂— 120, is quite satisfactory for this 
purpose. Note that A^is(^) depends on SR through Eq. 
(13). 

The remaining part of the N function, namely, iV^fa), 
that arises due to the far left-hand cut, can be dealt 
with following the method of Balazs.8 With the 
substitution 

s-^Mz*+MK*+2MzW, 

one can write N2(s) as 

where 

and 

1 rXL <t>(%') 
N2(s) = - dx', 

TTJ o \+x'w 

<j>{xf) = [Img1+{s')D{s')w'-] 

xL=[2Mz/(Mz2+MK
2)l. 

(16) 

(17) 

(18) 

The kernel [ 1 + # V ^ _ 1 can now be approximated by 
single straight lines for 0 ^ x' ^ XL and for values of w 
that fall in the region of interest. Thus, the following 
approximation can be made: 

1 1 f x!—x2 x!—xi 1 

\-\-XfW Xi— X2\\ + XiW \-\-X2W J 
(19) 

Here xi and x2 are the xf coordinates of the two points 
at which the various straight lines cut the corresponding 
curves for [ 1 + x ' w ] - 1 . Using the above approximation 
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for the kernel, iV f̂a) can now be approximated as 

N2(s) = bi/(s-s9)+b4/(s-sJ, (20) 

with s3=—T0.2 and $4=—844.0 and bz and b* as two 
unknown residues. Equations (14) and (20) can now be 
substituted in the expression for D (s) [i.e., Eq. (12)] to 
get 

s-s0 r Q,Z/S' 
D(s) = l-

X 

F 
J Tl 

h + -Si S~S2 -sz 

—Ids'. 
-S4J 

(21) 

bz and b± will now be determined by matching the 
N/D amplitude and its derivative, as discussed above, 
with the corresponding quantities obtained through the 
fixed-energy dispersion relations 

{A(s,t),B(s,t)} 

— Pole terms+ 
/ 

+ 

{Au(u',s),Bu(u',s)} 
duf 

/ 

u — u 

{At{t\s)yBt{tf,s)} 

t'-t 
•dt'. (22) 

We shall approximate these dispersion relations by re
taining on the right-hand side only the contributions 
that come from the crossed-channel 2 pole and direct 
channel Or pole. We thus obtain 

g1+(s) = gl+*(s)+g1+°-(s). 

gi+sC0 is already given by Eq. (10) and 

glf-(s)=-K\ 
f (W+M3)2-MK2 I 

I (WB+MSy-Mx* \w- Wx 

(23) 

(24) 

Here K is the residue of the pole due to 0~ bound state 
and can be interpreted as the square of the SQrK 
coupling constant. We could also add the contributions 
due to p, w, and <j> in Eq. (22), but they can be shown to 
be quite unimportant. As regards <j> and w, the situation 
here is similar to that of Pati,7 who has recently dis
cussed the E* in a similar spirit. As for p, the relatively 
unimportant role it plays in such calculation has first 
been noted in the case of TV*.6 

We can now match the N/D amplitude and its de
rivative with, respectively, gi+(s) and its derivative as 
given by Eq. (23). For this we choose the point s== 70.0, 
which we also take to be our subtraction point. Once 
the matching is done, the N/D amplitude is completely 
determined and we can look for a zero in the D function, 
corresponding to the Q~~ bound-state pole. The location 
(sB)out and the residue Kout of this pole are then 
given by 

£[(^)out]=0, (25) 

*«*= -K^w/zywxi/v*)]-(«>«-. (26) 

TABLE I. Variation of output mass and coupling constant with 
input values of coupling constant for (S.B)in=120.0. 

(SR)U Kh (SR)OI KQX 

120.0 
120.0 
120.0 
120.0 

2.0 
4.0 
8.0 

15.0 

140.0 
134.0 
121.0 
111.0 

5.4 
5.6 
7.5 
8.9 

TABLE II. Variation of output mass and coupling constant 
with the input values of coupling constant for an input mass 
(SR) in =130.0. 

(SR), Kit (SR)O K0y 

130.0 
130.0 
130.0 
130.0 

1.0 
2.0 
5.0 

10.0 

135.0 
130.0 
124.0 
116.0 

6.1 
6.5 
7.0 
8.0 

TABLE III. Variation of output mass and coupling constant 
with input values of coupling constant for an input mass 
(SR) in =135.0. 

(SR)u Kn (SR)O Kox 

135.0 
135.0 
135.0 
135.0 

1.0 
2.0 
5.0 

10.0 

129.0 
126.0 
121.0 
116.0 

6.5 
7.0 
7.4 
8.2 

We shall have generated the Or self-consistently in the 
amplitude EK —> ZK if the input values of K and SR, 
used in Eqs. (13) and (24) coincide with the ones ob
tained through Eqs. (25) and (26). In practice, this 
was achieved by choosing various sets of input values 
of SR and K, and obtaining the output values through 
Eqs. (25) and (26) in each case. The results are sum
marized in Tables I-III, which show that the self-
consistency occurs at SR=\2\ and K=8. The experi
mental mass of Or is, in our units, SR= 144. It may be 
noted that this result is in keeping with calculations on 
N*9 S*, etc., where the masses obtained are invariably 
smaller than those obtained by Martin and Wali,5 

implying that the contributions from the far left-hand 
cut in generating these resonances is, in all cases, quite 
important. The masses of all these resonances would 
presumably turn out to be closer to the experimental 
masses if one could incorporate the inelastic effects in 
the D function as evidenced by a recent calculation of 
Balazs on the p meson.11 

As a last point, we would like to comment briefly on 
the variations that our results show, as the matching 
point is changed. For variation of the matching point 
in the short region between the beginning of the short 
cut and the origin, the change in the above result is 
within a few percent. However, when matching at 

11L. A. P. Balazs, Phys. Rev. 132, 867 (1963). 
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points to the right of the short cut, some large varia
tion is observed; the Balazs pole residues sometimes 
show wild variations, even for slight changes in the 
position of the matching point. This can be traced to 
the factor (W— WR)~1 in Eq. (24), which changes sign 
through infinity as WR crosses the matching point. I t 
therefore seems advisable to match the amplitudes in 
the other region mentioned. A different matching pro

cedure in this region, namely, matching the amplitude 
at two points instead of matching the amplitude and 
its derivative both at one point, showed no appreciable 
variation of the result. 
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ment. L.K.P. wishes to thank the Council of Scientific 
and Industrial Research for financial support. 
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Protons of energies of 110-450 MeV have been produced by bombardment of targets of lithium-6, carbon, 
aluminum, and copper by electrons of 1- and 4-BeV energy. It is shown that at this energy and angle the 
electromagnetic interaction of the virtual photons with the nucleus is consistent with an interaction with 
one nucleon followed by a subsequent scattering process. This is in contrast to the interaction at lower 
energies (~100 MeV) where the interaction takes place by absorption from two nucleons in the nucleus 
simultaneously (quasideuteron model). Deuterons have also been observed and are believed to be produced 
by a pickup process. 

APPARATUS 

DURING an experiment at the Cambridge Electron 
Accelerator on electron-proton scattering with 

1- and 4-BeV electrons,1 we have studied the production 
of protons from lithium, carbon, aluminum, and copper 
targets. The apparatus is shown in Fig. 1. 

A target of height YQ in. is placed 0.8 in. from the 
equilibrium orbit of the circulating electron beam. 
Positively charged particles are focused in a simple 
quadrupole spectrometer onto a scintillation counter 
system consisting of two thin denning counters and a 
counter thick enough to stop 150-MeV protons. The 
first two counters were used to define a particle trajec
tory which had crossed the focal plane, and lay within a 
momentum band Ap/pc^:5A%. 

The pulse height from the thick counter was displayed 
on a 400-channel pulse-height analyzer, and was used 
to separate deuterons from protons and pi mesons. 
At the smaller momenta, protons stopped therein and 
gave bigger pulses than all other particles. At the other 
momenta, protons passed through, giving a smaller 
pulse height, and the largest pulses were given by 
deuterons stopping. Positrons and pi mesons had a 
smaller ionization loss than the protons and gave a 
still smaller pulse height. A pulse-height distribution 
for £ , = 4 BeV, 0=63.1°, ^ = 7 9 4 MeV/c is shown in 
Fig. 2. 

* Work supported by the U. S. Atomic Energy Commission. 
f National Science Foundation Predoctoral Fellow. 
1 J. R. Dunning, Jr., K. W. Chen, N. F. Ramsey, J. R. Rees, 

W. Shlaer, J. K. Walker, and Richard Wilson, Phys. Rev. Letters 
10, 500 (1963). 

Some of the photoprotons lost energy by nuclear 
absorption before passing through the final counter. 
These then gave too small a pulse height and were not 
identified as protons. A nuclear absorption correction 

TOP VIEW 
ELECTRON PROTON SCATTERING 

PROTON DETECTION 

FIG. 1. General layout of the apparatus. 


